Repetition reduction across multiple repetitions in American Sign Language fingerspelling

Aurora Martinez del Rio

Diane Brentari

Linguistic Society of America, Annual Meeting January 9, 2021

Repetition-based reduction

Previous research has shown a relationship between the number of times a word has been mentioned and word duration.

Mention Number

Word duration

Repetition reduction in fingerspelling: An example

Repetition 1
Duration $=680 \mathrm{~ms}$
Repetition 2
Duration $=442 \mathrm{~ms}$
Repetition 3
Duration=238ms
Fingerspelled word: D-I-E-T

Research Questions

Primary question:

$>$ What is the relationship between a fingerspelled word's previous mentions in discourse and its length?

Sub questions:

$>$ How does reduction in length continue past a word's second mention?
$>$ Does the time between mentions influence length reduction?

Research Questions

Primary question:

$>$ What is the relationship between a fingerspelled word's previous mentions in discourse and its length?

Sub questions:

$>$ How does reduction in length continue past a word's second mention?
$>$ Does the time between mentions influence length reduction?
(Does phrasal position influence the length of repeated mentions?)

Presentation overview

Background

- Repetition reduction in ASL fingerspelling and speech
- Theoretical backdrop
- Research predictions

Methods
Results
Implications

Repetition-reduction in ASL fingerspelling

Word reduction in ASL fingerspelling continues across multiple word mentions:
> Significant increase in signing rate between second and third mentions ${ }^{1}$
> Reduction seen continuing across four mentions of two words ${ }^{2}$
$>$ Increase in letter coarticulation across mentions ${ }^{3}$

Repetition-reduction in speech

The givenness of a word in discourse influences its duration:
$>$ Old, already given words are reduced in duration ${ }^{1}$
$>$ Reduction does not significantly increase after a word's second mention²

Repetition has a binary effect

Repetition-reduction in speech

The givenness of a word in discourse influences its duration:
$>$ Old, already given words are reduced in duration ${ }^{1}$
$>$ Reduction does not significantly increase after a word's second mention²

Repetition has a binary effect

> Increased distance between repetitions associated with less reduction ${ }^{3}$

Theoretical explanations

More contextual information available about a word's identity \rightarrow increased predictability.

Perceiver oriented theories:
$>$ Reduction is a result of balancing conserving effort and perceiver comprehension¹.

Theoretical explanations

More contextual information available about a word's identity \rightarrow increased predictability.

Perceiver oriented theories:
$>$ Reduction is a result of balancing conserving effort and perceiver comprehension ${ }^{1}$.

Part of this contextual information available for production is a word's givenness

Givenness information used for production

Predictions:

Prediction 1:
> Fingerspelled words will continue to reduce past second mentions, decreasing in the amount they reduce as they are repeated.

Prediction 2:
$>$ Variation in repeated word duration can be accounted for through distance between mentions (farther apart \rightarrow less reduction)

Methods: data

Wider fingerspelling corpus:
$>$ Drawn from a lager crowd-sourced data-set ${ }^{1}$ of fingerspelling videos from online (35,000 fingerspelled words)
> Encompasses a wide range of genres and topics
> Cooking
> Politics
> Education
$>$ Signing ranges from spontaneous to semi-scripted

Methods: data

Reduction corpus
> Repetition dataset targeted repeated words (3-5 repetitions)
> Excludes lexicalized fingerspelling
> Annotated for duration, letters, \& phrasal position
Composition:

Dataset category	Number
Signers	34
Words	103
Individual tokens	477

Methods: Analysis

Analysis 1 tests the effect of:
$>$ Mention number (1-5)
> Phrasal position

Analysis 2 tests the effect of:
> Mention number (2-5)
> Time distance between repeated mentions

Results: Analysis 1

Prediction 1:

Fingerspelled words will continue to reduce past second mentions, decreasing in the amount they reduce as they are repeated.

Mean duration of fingerspelling tokens across repetitions

Results: Analysis 1

Comparing mention means:
> $1^{\text {st }}$ vs. subsequent mentions
($E=0.154, S E=0.014, p<0.001$)

Mean duration of fingerspelling tokens across repetitions

Results: Analysis 1

Comparing mention means:
> $1^{\text {st }}$ vs. subsequent mentions

$$
(E=0.154, S E=0.014, p<0.001)
$$

$>2^{\text {nd }}$ vs. subsequent mentions

$$
(E=0.045, S E=0.015, p<0.003)
$$

Mean duration of fingerspelling tokens across repetitions

Results: Analysis 1

Comparing mention means:
> $1^{\text {st }}$ vs. subsequent mentions

$$
(E=0.154, S E=0.014, p<0.001)
$$

$>2^{\text {nd }}$ vs. subsequent mentions

$$
(E=0.045, S E=0.015, p<0.003)
$$

$>3^{\text {rd }}$ vs. subsequent mentions ($E=0.025$, $S E=0.016, p=.128$)

Mean duration of fingerspelling tokens across repetitions

Results: Analysis 1

Comparing mention means:
> $1^{\text {st }}$ vs. subsequent mentions

$$
(E=0.154, S E=0.014, p<0.001)
$$

$>\quad 2^{n d}$ vs. subsequent mentions

$$
(E=0.045, S E=0.015, p<0.003)
$$

$>3^{\text {rd }}$ vs. subsequent mentions ($\mathrm{E}=0.025$, $\mathrm{SE}=0.016, p=.128$)
$>4^{\text {th }}$ vs. subsequent mentions ($E=0.016, S E=0.019, p=.423$)

Mean duration of fingerspelling tokens across repetitions

Results: Analysis 1

Accounting for variation in length due to phrasal position:

Variation in length will be mediated by phrasal position (phrase final \rightarrow longer)

Results: Analysis 1

Accounting for variation due to phrasal position:
> Phrase-final tokens were significantly longer
$(E=0.081, E=0.015, p<0.001)$

Results: Analysis 2

Prediction 2:

Variation in length will be accounted for by distance between repeated mentions (Increased distance \rightarrow increased duration)

Duration vs. distance between tokens

Results: Analysis 2

Results:

> Distance between mentions had a significant positive correlation with duration within the model
$(E=0.053, S E=0.013, p<0.001)$

Duration vs. distance between tokens

Implications

For our understanding of fingerspelling:
> Confirms findings from previous work

- Mention number
- Final lengthening
$>$ Shows that reduction effect is not uniform across mentions
$>$ Adds the dimension of between-mention distance

Implications

For models of language production:
> Language users are sensitive to more detailed information about a word's givenness encompassing:

- How many times it has been mentioned
- Time-distance from the last mention

Conclusions

Using ASL fingerspelling as the lens through which to examine word reduction and repetition provides us with a more complex view of how repetition can contribute to word length.

Remaining questions:
> How much of this reduction effect is a result of modality vs. how much is a result of the fingerspelling system?
$>$ How does repetition reduction in fingerspelling impact comprehension?

Acknowledgements

Many thanks to Diane Brentari, Julia Kersten, and the University of Chicago's
Modalities of Language group for collaboration, support, and feedback!

This work was supported by NSF grant IIE 1409886 to Brentari and colleagues

Contact: amartinezdelrio@uchicago.edu

References

-Aylett, M., \& Turk, A. (2004). The smooth signal redundancy hypothesis: A functional explanation for relationships between redundancy, prosodic prominence, and duration in spontaneous speech. Language and speech, 47(1), 31-56.
-Bell, A., Brenier, J. M., Gregory, M., Girand, C., \& Jurafsky, D. (2009). Predictability effects on durations of content and function words in conversational english. Journal of Memory and Language, 60(1), 92-111.
-Deaf Health Mom. (2014, May 4). Just do it! [Video]. Youtube. https://youtu.be/icLGzXB_4bY
-Fowler, C. A., \& Housum, J. (1987). Talkers' signaling of "new" and "old" words in speech and listeners' perception and use of the distinction. Journal of memory and language, 26(5), 489-504.
-Jurafsky, D., Bell, A., Gregory, M., \& Raymond, W. D. (2001). Probabilistic relations between words: Evidence from reduction in lexical production. In J. Bybee \& P. Hopper (Eds.), Typological studies in language (pp. 229-254).
-Lepic, R. (2019). A usage-based alternative to "lexicalization" in sign language linguistics. Glossa: a journal of general linguistics, 4(1).
-Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H\&H theory. In Speech production and speech modelling (pp. 403-439). Springer, Dordrecht.
-Rodriguez-Cuadrado, S., Baus, C., \& Costa, A. (2018). Foreigner talk through word reduction in native/non-native spoken interactions. Bilingualism: Language and cognition, 21(2), 419-426.
-Shi, B., Martinez Del Rio, A.., Keane, J., Brentari, D., Shakhnarovich, G., \& Livescu, K. (2019). Fingerspelling recognition in the wild with iterative visual attention. arXiv preprint arXiv:1908.10546.
-Turnbull, R. (2015). Assessing the listener-oriented account of predictability-based phonetic reduction (Doctoral dissertation, The Ohio State University).
-Vajrabhaya, P., \& Kapatsinski, V. (2011). There Is More to the Story: First-mention Lengthening in Thai Interactive Discourse. In ICPhS (pp. 2050-2053).
-Wager, D. S. (2012). Fingerspelling in American Sign Language: A case study of styles and reduction (Doctoral dissertation, The University of Utah).

Results: NM markers

Focus-finger results

Words with a focus-finger were not significantly longer. ($\mathrm{E}=0.030, \mathrm{SE}=0.019, \mathrm{p}=0.177$)

Results: NM markers

Raised-eyebrows results:

Words with raised-eyebrows were not significantly longer. ($\mathrm{E}=0.005, \mathrm{SE}=0.022, \mathrm{p}=0.82$)

Raised-eyebrows and mean duration of tokens

